首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134430篇
  免费   7118篇
  国内免费   96篇
林业   5183篇
农学   3651篇
基础科学   931篇
  14381篇
综合类   27515篇
农作物   5098篇
水产渔业   5816篇
畜牧兽医   69722篇
园艺   1441篇
植物保护   7906篇
  2018年   1466篇
  2017年   1620篇
  2016年   1536篇
  2015年   1332篇
  2014年   1636篇
  2013年   4640篇
  2012年   3148篇
  2011年   3883篇
  2010年   2436篇
  2009年   2461篇
  2008年   3753篇
  2007年   3520篇
  2006年   3542篇
  2005年   3273篇
  2004年   3171篇
  2003年   3247篇
  2002年   3084篇
  2001年   3798篇
  2000年   3853篇
  1999年   3032篇
  1995年   1464篇
  1994年   1333篇
  1993年   1290篇
  1992年   2841篇
  1991年   3112篇
  1990年   3007篇
  1989年   3028篇
  1988年   2888篇
  1987年   2970篇
  1986年   3063篇
  1985年   2963篇
  1984年   2405篇
  1983年   2123篇
  1982年   1475篇
  1981年   1375篇
  1980年   1298篇
  1979年   2267篇
  1978年   1894篇
  1977年   1616篇
  1976年   1528篇
  1975年   1656篇
  1974年   2153篇
  1973年   2107篇
  1972年   2140篇
  1971年   2027篇
  1970年   1926篇
  1969年   1727篇
  1968年   1456篇
  1967年   1590篇
  1966年   1338篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   
12.
Demand for livestock food products is projected to increase dramatically through to 2050. Increased livestock production capacity on marginal lands will be critical to meeting this demand. A 5‐year research effort was undertaken to evaluate lamb and sward productivity within open and hardwood silvopasture (SP) systems in Appalachia, USA. Grazing began in mid to late April each year, with the grazing season averaging 141 d. Grazing system treatments during 2002 and 2003 grazing seasons were as follows: 100% open pasture (OP), 67% OP and 33% SP, and 67% OP and 33% SP with delayed SP grazing initiation (OSD). In 2004, a 100% SP (SP) system was added. Animals were rotationally stocked through either 6 (2002–2004) or 7 (2005–2006) paddocks. Open pasture produced greater (P < 0·001) grazing season herbage yield, while all systems generated similar animal performance. Based on summer solstice, herbage production in spring was greater (P < 0·001) than summer, except in 2003. Total non‐structural carbohydrate (TNC) content was greater (P < 0·05) in spring than in summer, except in 2004. Animal performance was superior in spring versus summer (P < 0·001). Animal plasma urea nitrogen (PUN) was lower (P < 0·05) for OP in 2003. When PUN was correlated with nutritive value indicators, the ratio of TNC to crude protein (CP) had the strongest correlation. The strong correlation indicates the need for synchronized ruminal energy and CP availability. Development of silvopasture from existing woodlots has potential to improve whole farm productivity on marginal lands.  相似文献   
13.
Plants have developed different mechanisms to absorb and solubilize phosphorus (P) in the soil, especially in environments with low P availability. This study evaluated the effects of different winter cover crops on soil P availability in a clayey subtropical (Hapludox) soil receiving soluble P fertilizer and a rock phosphate applied to the summer crop, under no‐tillage. The experiment was carried out over 3 yrs (2009–2011) with five different cover crop species: common vetch, fodder radish, ryegrass, black oat, white clover and fallow as control. The soil was sampled after the third year of cover crop cultivation and analysed for inorganic and organic P forms according to the well‐established Hedley fractionation procedure. Phosphate fertilizers promoted accumulation of both labile and nonlabile P pools in soil in the near surface layer, especially under rock phosphate. Fertilizer applications were not able to change P fractions in deeper layers, emphasizing that the Brazilian clayey soils are a sink of P from fertilizer and its mobility is almost nil. Although the cover crops recycled a great amount of P in tissue, in a short‐term evaluation (3 yrs) they only changed the content of moderately labile P in soil, indicating that long‐term studies are needed for more conclusive results.  相似文献   
14.
In the past five decades, constant research has been directed towards yield improvement in pigeonpea resulting in the deployment of several commercially acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest breakthrough, enigma of stagnant productivity still remains unsolved. To sort this productivity disparity, genomic research along with conventional breeding was successfully initiated at ICRISAT. It endowed ample genomic resource providing insight in the pigeonpea genome combating production constraints in a precise and speedy manner. The availability of the draft genome sequence with a large‐scale marker resource, oriented the research towards trait mapping for flowering time, determinacy, fertility restoration, yield attributing traits and photo‐insensitivity. Defined core and mini‐core collection, still eased the pigeonpea breeding being accessible for existing genetic diversity and developing stress resistance. Modern genomic tools like next‐generation sequencing, genome‐wide selection helping in the appraisal of selection efficiency is leading towards next‐generation breeding, an awaited milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing genetic improvement in pigeonpea with an amalgam of conventional breeding as well as genomic research.  相似文献   
15.
Fish were fed a single‐strain yeast fraction (SsYF; 2 g/kg) or a multistrain yeast fraction (MsYF; 0.8 g/kg) for 10 weeks. The results demonstrated significant (p ≤ 0.03) elevations in weight gain, specific growth rate, protein efficiency ratio, and feed conversion ratio in fish fed the yeast fraction‐supplemented diets. In the distal intestine, a significant elevation in microvilli density was observed after 5 and 10 weeks of dietary supplementation with MsYF and SsYF, respectively, compared to control fed fish (p < 0.001). A significant elevation (p = 0.02) in the perimeter ratio was observed in fish fed diets supplemented with the yeast fractions. After 10 weeks of feeding on the experimental diets, Rt‐qPCR demonstrated a significant downregulation (p < 0.05) in the stress response genes, heat‐shock protein 70 (hsp70) and proliferating cell nuclear antigen (pcna), in fish fed diets supplemented with the yeast fractions. Significant (p < 0.05) elevations in interleukin 1‐beta (il1β) and interleukin‐10 (il10) gene expression were observed in fish fed diets supplemented with the MsYF compared to the other dietary groups. These findings suggest that feeding an MsYF specifically at a lower incorporation rate < 1 g/kg, compared to a commercial SsYF at 2 g/kg, is effective in improving the intestinal health status and growth performance of European seabass.  相似文献   
16.
New Forests - Native trees from the Caribbean were tested for seed desiccation responses, by adapting the “100-seed test” protocol. Ninety-seven seed lots of 91 species were collected...  相似文献   
17.
Global averages were obtained for amounts of energy, land, water, wildfish, nitrogen, and phosphorus embodied in aquaculture feed ingredients. These data allowed amounts of these embodied resources to be calculated for typical feed formulations for channel catfish, Ictalurus punctatus; hybrid catfish, I. punctatus♀ × I. furcatus♂; Vietnamese catfish, Pangasius spp.; Atlantic salmon, Salmo salar; rainbow trout, Oncorhynchus mykiss; tilapia, Oreochromis spp.; whiteleg shrimp, Litopenaeus vannamei; and black tiger shrimp, Penaeus monodon. Embodied resource use per m.t. of feed varied among species: energy, 4.90–12.48 GJ/m.t.; land, 0.082–0.312 ha/m.t.; water, 502–1227 m3/m.t.; wildfish, 0–2880 kg/m.t.; nitrogen, 3.08–8.63 kg/m.t.; phosphorus, 1.16–5.62 kg/m.t. These calculations did not account for variations in site‐specific factors related to embodied resources and feed composition and use. But they suggest that reducing feed conversion ratio (FCR) by 0.1 unit for the seven species (species groups) could potentially reduce feed use by around 1.1 million tonne (Mt) while conserving 9.8 million GJ of energy, 270,000 ha of agricultural land, 1.4 billion m3 of freshwater, and 1.24 Mt of wildfish. Reduction of the FCR is a powerful means of lessening farm‐level production costs and negative impacts of feed production and use.  相似文献   
18.
19.
The use of cattle manure (CM) for fertilization presents challenges for optimizing nitrogen (N) use. Our work aimed to assess N efficiencies, in a 6‐year experiment with three biennial rotations of four crops: oat–sorghum (first year) and ryegrass–maize (second year) in a rainfed humid Mediterranean area of Spain. Fertilization treatments included the following: control (no N), 250 kg mineral N ha?1 year?1 (250MN), three CM rates (supplying 170, 250 and 500 kg N ha?1 year?1) and four treatments where the two lowest CM rates were complemented with either 80 or 160 kg mineral N ha?1 year?1. Treatments were distributed randomly in each of three blocks. Maximum dry‐matter yield (~44–49 t ha?1 rotation?1) was achieved in the third rotation, and only the control and the 170CM yielded significantly less. Within the limitations of the EU Nitrate Directive, the N steady state supply of 170CM always requires a complement of mineral N (80 kg N ha?1) to maximize N agronomic efficiency. The maximum N‐fertilizer replacement value (250CM vs. 250MN) was 0·67, without significant differences between the two treatments in other N‐related efficiency indexes, which indicates that plants took advantage of residual‐N effects. Nitrogen losses by leaching in the 250CM treatment were around 5–7% of the N applied. This reinforces the sustainability of manure recycling in long cropping seasons.  相似文献   
20.
Implications of silage hygienic quality for animal production were investigated on forty‐five dairy farms in South West England. Samples of grass and maize silages and of total mixed rations (TMR) were obtained together with information on silage technology, herd size and animal production. Samples were analysed for mycotoxins, bacteria, yeasts, moulds and chemical composition. Thirteen mycotoxins were assayed, but none were detected in the samples of grass silage. However, mycotoxins were found in 0·9 of all maize and other silage samples, with deoxynivalenol and zearalenone predominating. There was no relationship between total mycotoxin concentration and mean lactation milk yield per cow. Enterobacteria counts tended to be higher in maize silage than in grass silage and higher still in TMR – a cause for concern. There were no relationships between mould counts and mycotoxin concentrations in silages, implying that mycotoxins may have been produced in the field pre‐ensiling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号